File Input and Output
The techniques for file input and output, i/o, in C++ are virtually identical for writing and reading to the standard output devices, the screen and keyboard. To perform file input and output the include file fstream must be used.

	

fstream contains class definitions for classes used in file i/o. Within a program needing file i/o, for each output file required, an object of class ofstream is instantiated. For each input file required, an object of class ifstream is instantiated. The ofstream object is used exactly as the cout object for standard output is used. The ifstream object is used exactly as the cin object for standard input is used. This is best understood by followıng example.

#include <iostream>

#include <fstream>

using namespace std;

int main()

{

 ofstream myFile("out.txt");

 // Creates an ofstream object named myFile

 if (! myFile) // Always test file open

 {

 cout << "Error opening output file" << endl;

 return -1;

 }

 myFile << "Hello World" << endl;

 myFile.close();

 return 0;

}

Let's examine this program. The first step created an ofstream object named myFile.

The constructor for the ofstream class takes two arguments. The first specifies a file name as a C-style string, the second a file mode.

There are two common file open modes, truncate and append. By default, if no mode is specified and the file exists, it is truncated. The mode is specified by using an enumerator define in the ios class. The ios class contains members which describe modes and states for the input and output classes.

· By default, if a file does not exist it is created.

· By default, a file will be a text file, not a binary file.

· By default, an existing file is truncated.

· To combine modes, "or" them together using "|".

	Mode
	Meaning

	out
	Open a file or stream for insertion (output).

	in
	Open a file or stream for extraction (input).

	app
	Append rather than truncate an existing file. Each insertion (output) will be written to the end of the file

	trunc
	Truncate existing file (default behavior)

	ate
	Opens the file without truncating, but allows data to be written anywhere in the file

	binary
	Treat the file as binary rather than text. A binary file has data stored in internal formats, rather than readable text format. For example, a float would be stored as its internal four byte representation rather than as a string.

To open a file, truncating any existing contents, use any of the three equivalent statements.

	ofstream myFile("SomeFileName");
ofstream myFile("SomeFileName",ios::out);
ofstream myFile("SomeFileName",ios::out | ios::trunc);

To open a file, and append to any previous contents

To open a file for binary output:

	ofstream myFile("SomeFileName",ios::binary);

To open a file for input, an object of ifstream class is used:

	ifstream inFile("SomeFileName");

Practice Problem: Write a program that prompts the user for a file name and then writes a message to that file. Open the file in append mode so that contents will not be lost if the user specifies an existing file. Hint: you will need to use cin, cout and ofstream objects.

#include <iostream>
#include <fstream>
#include <string>
using namespace std;

int main()
{

 string fileName;

 cout << "Enter a file name, such as c:/whatever.txt" << endl;
 cin >> fileName;

 ofstream oFile(fileName.c_str(),ios::app);

 if (! oFile)
 {
 cout << "Error opening output file" << endl;
 return -1;
 }

 oFile << "Hello World" << endl;
 oFile << "Predicable choice of output," << endl;

 return 0;
}

Useful Methods of Input and Output Classes
The ifstream class has several useful methods for input. These method are also in the class cin, which is used to read from standard input. These methods are used to read from any input stream. An input stream is a source of input such as the keyboard, a file or a buffer.

· Extraction Operator, >>
This overloaded operator handles all built in C++ data types. By default, any intervening white space is disregarded. That is, blanks, tabs, new lines, formfeeds and carriage returns are skipped over.

· get()
This form of get extracts a single character from the input stream, that is, from the standard input, a file or a buffer. It does not skip white space. It returns type int.

· get(char &ch)
This form of get also extracts a single character from the input stream, but it stores the value in the character variable passed in as an argument.

· get(char *buff, int buffsize, char delimiter='\n')
This form of get reads characters into the C-style buffer passed as an argument buffsize characters are read, the delimiter is encountered or an end of file is encountered. The '\n' is the new line character. The delimiter is not read into the buffer but is instead left in the input stream. It must be removed separately but using either another get or an ignore. Because of this added step, this form of get is a frequent source of errors and should be avoided. Fortunately, another method shown below, getline, reads in the delimiter as well and should be used in place of this form of get

· ignore(int count=1, int delim=traits_type::eof)
This method reads and discards "count" characters from the input stream.

· peek()
This method returns the next character from the input stream, but does not remove it. It is useful to look ahead at what the next character read will be.

· putback(char &ch)
This method puts ch onto the input stream. The character in ch will then be the next character read from the input stream.

· unget()
This method puts the last read character back into the input stream.

· read(char *buff, int count)
This method is used to perform an unformatted read of count bytes from the input stream into a character buffer.

The ofstream class has several useful methods for writing to an output stream. An output stream is standard output (usually the screen), a file or a buffer. These methods are also in the object cout, which is used for standard output.

· Insertion Operator, <<
This overloaded operator will handle all built-in C++ data types.

· put(char ch)
This method puts a single character into the output stream.

· write(char *buff, int count)
This method is used to perform an unformatted write from a character buffer to the output stream.

#include <iostream>
#include <fstream>
using namespace std;

int main()
{
 int blank_count = 0;
 int char_count = 0;
 int sentence_count = 0;
 char ch;
 ifstream iFile("text.txt");
 if (! iFile)
 {
 cout << "Error opening input file" << endl;
 return -1;
 }
 while (iFile.get(ch))
 {
 switch (ch) {
 case ' ':
 blank_count++;
 break;
 case '\n':
 case '\t':
 break;
 case '.':
 sentence_count++;
 break;
 default:
 char_count++;
 break;
 }
 }
 cout << "There are " << blank_count << " blanks" << endl;
 cout << "There are " << char_count << " characters" << endl;
 cout << "There are " << sentence_count << " sentences" << endl;
 return 0;
}
Here is the output of the program

[image: image1.png]are 50 blanks
are 276 characters
are 3 sentences

any key to continue_

As a second example, let's implement a program that will copy the contents of one file to another. The program will prompt the user for the input and output file names, and then copy.

#include <iostream>
#include <fstream>
#include <string>
using namespace std;

int main()
{
 char ch;
 string iFileName;
 string oFileName;
 cout << "Enter the source file name: ";
 cin >> iFileName;
 cout << "Enter the destination file name: ";
 cin >> oFileName;
 ofstream oFile(oFileName.c_str());
 ifstream iFile(iFileName.c_str());
 //Error checking on file opens omitted for brevity.
 while (iFile.get(ch))
 {
 oFile.put(ch);
 }
 return 0;
}

Up till now, we have accepted the default output formatting. C++ defines a set of manipulators which are used to modify the state of iostream objects. These control how data is formatted. They are defined in the include file, <ios>. It is not usually necessary to explicitly include this file because it is included indirectly via the use of other includes such as <IOSTREAM> .

Let's see how some of these manipulators work in a simple program.

	Manipulator
	Use

	boolalpha
	Causes bool variables to be output as true or false.

	noboolalhpa (default)
	Causes bool variables to be displayed as 0 or 1.

	dec (default)
	Specifies that integers are displayed in base 10.

	hex
	Specifies that integers are displayed in hexadecimal.

	oct
	Specified that integers are displayed in octal.

	left
	Causes text to be left justified in the output field.

	right
	Causes text to be right justified in the output field.

	internal
	Causes the sign of a number to be left justified and the value to be right justified.

	noshowbase (default)
	Turns off displaying a prefix indicating the base of a number.

	showbase
	Turns on displaying a prefix indicating the base of a number.

	noshowpoint (default)
	Displays decimal point only if a fractional part exists.

	showpoint
	Displays decimal point always.

	noshowpos (default)
	No "+" prefixing a positive number.

	showpos
	Displays a "+" prefixing a positive number.

	skipws (default)
	Causes white space (blanks, tabs, newlines) to be skipped by the input operator, >>.

	noskipws
	White space not skipped by the extraction operator, >>.

	fixed (default)
	Causes floating point numbers to be displayed in fixed notation.

	scientific
	Causes floating point numbers to be displayed in scientific notation.

	nouppercase (default)
	0x displayed for hexadecimal numbers, e for scientific notation

	uppercase
	0X displayed for hexadecimal numbers, E for scientific notation

The manipulators in the above table modify the state of the iostream object. This means that once used on an iostream object they will effect all subsequent input or output done with the object. There are several other manipulators that are used to format a particular output but do no modify the state of the object.

Setting Output Width
setw(w) - sets output or input width to w; requires to be included.
width(w) - a member function of the iostream classes.

Filling White Space
setfill(ch) - fills white space in output fields with ch; requires to be included.
fill(ch) = a member function of the iostream classes.
Setting Precision
setprecision(n) - sets the display of floating point numbers at precision n. This does not effect the way floating point numbers are handled during calculations in your program.
Here is a simple program illustrating the use of the i/o manipulators.

#include <iostream>

#include <iomanip>

#include <string>

using namespace std;

int main()

{

 int intValue = 15;

 cout << "Integer Number" << endl;

 cout << "Default: " << intValue << endl;

 cout << "Octal: " << oct << intValue << endl;

 cout << "Hex: " << hex << intValue << endl;

 cout << "Turning showbase on" << showbase << endl;

 cout << "Dec: " << dec << intValue << endl;

 cout << "Octal: " << oct << intValue << endl;

 cout << "Hex: " << hex << intValue << endl;

 cout << "Turning showbase off" << noshowbase << endl;

 cout << endl;

 double doubleVal = 12.345678;

 cout << "Floating Point Number" << endl;

 cout << "Default: " << doubleVal << endl;

 cout << setprecision(10);

 cout << "Precision of 10: " << doubleVal << endl;

 cout << scientific << "Scientific Notation: " << doubleVal << endl;

 cout << uppercase;

 cout << "Uppercase: " << doubleVal << endl;

 cout << endl;

 bool theBool = true;

 cout << "Boolean" << endl;

 cout << "Default: " << theBool << endl;

 cout << boolalpha << "BoolAlpha set: " << theBool << endl;

 cout << endl;

 string myName = "abdulkadir gorur";

 cout << "Strings" << endl;

 cout << "Default: " << myName << endl;

 cout << setw(45) << right << "With setw(45) and right: "

 << myName << endl;

 cout.width(30);

 cout << "With width(30): " << myName << endl;

 cout << endl;

 return 0;

}
[image: image2.png]Default: abdulkadir gorur
Uith setu(45) and right: abdulkadir gorur

th uidth(30): abdulkad: i

Creating a Sequential Access File

· There is no "standard" C++ file structure; programmers must design file formats to meet the needs of their applications

Consider Following program

#include <iostream>

#include <fstream>

#include <cstdlib>

using namespace std;

int main(void)

{

 ofstream outClientFile; // ofstream object

 outClientFile.open("clients.dat"); // open file

 if (!outClientFile) // overloaded ! operator

 { // or: if(outClientFile.fail())

 cerr << "File could not be opened" << endl;

 system("PAUSE");

 exit(1); // prototype in cstdlib

 }

 cout << "Enter the account, name, and balance.\n"

 << "Enter end-of-file to end input.(CTRL+D)\n? ";

 int account; // acct number "field"

 char name[30]; // customer name

 double balance; // balance owed

 while (cin >> account >> name >> balance)

 {

 outClientFile << account << ' ' << name // ' ' is delimeter

 << ' ' << balance << '\n';

 cout << "? "; // prompt for next

 }

 outClientFile.close(); // explicit closing

 return 0; // ofstream destructor closes file

}

· ofstream object created for output (stream/logical file name)

· open() member function requires two arguments: physical filename and file open mode

· physical file name is a string in the form the OS can accept – but note \\ must be used instead of single backslash

· file open modes for an ofstream object

	ofstream ios enumerators

	Mode
	Description

	ios::app
	Write all output to the end of file (even if file position pointer is moved with seekp)

	ios::ate
	Open a file for output and move to the end of the file (normally used to append data to a file, but data can be written anywhere in the file

	ios::in
	The original file (if it exists) will not be truncated

	ios::out
	Open a file for output (default for ofstream objects)

	ios::trunc
	Discard the file's contents if it exists (this is also the default action for ios::out, if ios::ate, ios::app, or ios::in are not specified)

	ios::binary
	Opens the file in binary mode (the default is text mode)

· these enumerators can be combined with the bitwise OR operator (|)

· overloaded ! operator returns non-zero (true) if either the failbit or badbit is set for the stream as a result of the open operation

· extraction operator >> on cin returns 0 when eof has been encountered, so loop terminates

· insertion operator << on outClientFile writes formatted output to the object (which will accept any stream format manipulators)

· outClientFile is destroyed (destructor is invoked) either explicitly by close member function, or implicitly when it goes out of scope

· result is a standard text file (clients.dat) that can be read by any text editor (try Notepad, for example)

Reading Data from a Sequential Access File

· Data can be read from a sequential file by creating an ifstream object

· File open modes for an ifstream object:

	ifstream ios enumerators

	Mode
	Description

	ios::in
	The file is opened for input (default)

	ios::binary
	Opens the file in binary mode (the default is text mode)

· See example below

· constructor used to instantiate and open the file

· extraction operator >> returns 0 on eof

#include <iostream>

#include <fstream>

#include <iomanip>

#include <cstdlib>

using namespace std;

void outputLine(int, const char * const, double);

int main(void)

{

 // ifstream constructor opens the file

 ifstream inClientFile("c:\\clients.dat"); // default is ios::in

 if (!inClientFile)

 { cerr << "File could not be opened\n";

 system("PAUSE");

 exit(1);

 }

 int account; // record "field" definitions

 char name[30];

 double balance;

 cout << setiosflags(ios::left) << setw(10) << "Account"

 << setw(13) << "Name" << "Balance\n"

 << setiosflags(ios::fixed | ios::showpoint);

 while (inClientFile >> account >> name >> balance)

 outputLine(account, name, balance);

 system("PAUSE");

 return 0; // ifstream destructor closes the file

}

void outputLine(int acct, const char * const name, double bal)

{

 cout << setiosflags(ios::left) << setw(10) << acct

 << setw(13) << name << setw(7) << setprecision(2)

 << resetiosflags(ios::left)

 << bal << '\n';

}

· programs normally start reading from the beginning of a file, and read data consecutively until desired data is found

· file position pointers are maintained by the OS to indicate the byte number of the next byte in the file to be read/written; depending on the type of file, either a "get" pointer (input), "put" pointer (output), or both are maintained

· the file position pointer can be manipulated with member functions:

· seekg(n); // move to nth byte of ifstream object

· seekp(n); // move to nth byte of ofstream object

· for above member functions, it is assumed n is the offset from the beginning of the file; can specify:

· ios::beg // from the beginning (default)

· ios::cur // from the current position

· ios::end // from the end of the file

· example: to move the file position pointer to the end of the file, use:

seekp(0, ios::end);
· can also obtain current position of file position pointer with tellg or tellp

· See accesseq.cpp (menu-driven sequential file read/rewind)

· eof member function used to test for eof

· clear member function used to reset eof bit for next input

· seekg member function used to "rewind" to beginning of file

// Accessing sequential files

#include <iostream>

#include <fstream>

#include <iomanip>

#include <cstdlib>

using namespace std;

enum RequestType { ZERO_BALANCE = 1, CREDIT_BALANCE,

 DEBIT_BALANCE, END };

int getRequest();

bool shouldDisplay(int, double);

void outputLine(int, const char * const, double);

int main(void)

{

 // ifstream constructor opens the file

 ifstream inClientFile("a:\\clients.dat");

 if (!inClientFile)

 { cerr << "File could not be opened" << endl;

 system("PAUSE");

 exit(1);

 }

 int request, account;

 char name[30];

 double balance;

 cout << "Enter request\n"

 << " 1 - List accounts with zero balances\n"

 << " 2 - List accounts with credit balances\n"

 << " 3 - List accounts with debit balances\n"

 << " 4 - End of run"

 << setiosflags(ios::fixed | ios::showpoint);

 request = getRequest();

 while (request != END)

 {

 switch (request)

 {

 case ZERO_BALANCE:

 cout << "\nAccounts with zero balances:\n";

 break;

 case CREDIT_BALANCE:

 cout << "\nAccounts with credit balances:\n";

 break;

 case DEBIT_BALANCE:

 cout << "\nAccounts with debit balances:\n";

 break;

 }

 inClientFile >> account >> name >> balance; // priming input

 while (!inClientFile.eof()) // read loop

 {

 if (shouldDisplay(request, balance)) // display ?

 outputLine(account, name, balance);

 inClientFile >> account >> name >> balance; // working input

 }

 inClientFile.clear(); // reset eof bit for next input

 inClientFile.seekg(0); // move to beginning of file

 request = getRequest();

 }

 cout << "End of run." << endl;

 system("PAUSE");

 return 0; // ifstream destructor closes the file

}

int getRequest()

{

 int request; // menu choice

 do

 { cout << "\n? ";

 cin >> request;

 } while(request < ZERO_BALANCE || request > END);

 return request;

}

bool shouldDisplay(int type, double balance)

{

 if (type == CREDIT_BALANCE && balance < 0)

 return true;

 if (type == DEBIT_BALANCE && balance > 0)

 return true;

 if (type == ZERO_BALANCE && balance == 0)

 return true;

 return false;

}

void outputLine(int acct, const char * const name, double bal)

{

 cout << setiosflags(ios::left) << setw(10) << acct

 << setw(13) << name << setw(7) << setprecision(2)

 << resetiosflags(ios::left)

 << bal << '\n';

}

(interactive filename input, various file i/o functions)
// fileio.cpp -- COP2334 Example -- 040415 (sjd)

// Demo obtaining file name interactively, file i/o

#include <iostream>

#include <cstdlib>

#include <fstream>

#include <string>

using namespace std;

char menu(void);

void displayFile(fstream &);

void addRecord(fstream &);

int main(void)

{

 fstream myFile; // stream name

 char choice; // menu choice

 char myFileName[80]; // physical filename -- note: using 'char []'

 // and not 'string' type because open()

 // requires char * argument

 cout << "File to open?\n";

 cin.getline(myFileName, 80);

 myFile.open(myFileName, ios::in | ios::out | ios::app);

 if(myFile.fail())

 { cerr << "File cannot be opened.\n\n";

 system("pause");

 exit(EXIT_FAILURE);

 }

 while((choice = menu()) != 'Q')

 {

 if(choice == 'L')

 displayFile(myFile);

 else

 addRecord(myFile);

 }

 myFile.close();

 cout << endl << endl;

 system("pause");

 return 0;

}

char menu(void)

{

 string entry; // user entry

 char c; // menu choice

 do

 { cout << "\nCmd (L=list, A=add, Q=quit): ";

 getline(cin, entry);

 c = toupper(entry[0]);

 } while(c != 'L' && c != 'A' && c != 'Q');

 return c;

}

void displayFile(fstream &f)

{

 string name; // data item from file

 f.clear(); // clear and rewind

 f.seekg(0);

 while(getline(f, name)) // getline input delimited by '\n'

 cout << name << endl;

}

void addRecord(fstream &f)

{

 string name; // input workspace

 f.clear(); // clear if at eof

 cout << "Name to add? ";

 getline(cin, name);

 f << name << endl;

}

Updating Sequential Access Files

· Sequential access files are usually written with formatted output – just as it would be to the console, in ASCII text

· The length of each "field" depends on the length of the ASCII string formatted to contain its value: 123.45 is 6 bytes long, whereas 1000 is only four bytes

· One implication is that sequential files cannot be "updated in place" by overwriting a filed with new data, since the new data would need to be exactly as long as the data it replaces

· Updating of sequential files in batch processing applications involves the creating of a new file into which records are copied or updated:

[image: image3.png]Control
File

Update

Random-access Files

· Since istream and ostream classes contain member functions to move the file position pointers to read from or write to a specific byte, we could use these for random (direct) access, if we knew the byte number of the data we wished to input or output. This could be done by:

· Maintaining a separate index of the location of each data item in the file

· Converting a key field in a record to a specific location (hashing)

· Using fixed length records to hold data, one of which is a key field that contains (or is directly convertible to) a specific file location

· The last of these alternatives is the simplest to implement. For example, consider a file that can hold 100 records, each of which is 60 bytes long, and each of which has a key field that contains the record number (1-100):

[image: image4.png]53 60 119 120 179 sea0 som

· Given a record number n, we could determine the byte b at which it begins in the file by the formula: b = (n - 1) * 60

· In general, using this "direct access" scheme, we can determine the beginning byte of any record in a fixed-record size file with record length l by: b = (n - 1) * l

· Knowing this byte number, we can use seekg or seekp to move the file position pointer to the correct byte to directly read from or write to the file,

Writing Data Randomly to a Random-access File

· One requirement of the above-described scheme is that each record must have the same length. This cannot be accomplished by writing data to a file with the stream insertion operator (<<), which writes formatted data – the integer value 98 will occupy two bytes, while 98765 will require five bytes

· Instead, we will use the write member function of the ofstream class to write unformatted (raw) data, using the same byte representation as is used for data in internal memory; for example, if ints are represented in four bytes in memory, they will be written to the file in that representation, in four bytes. Its syntax:

write(reinterpret_cast<const char *> (&value),

 sizeof(value);
· The first argument must be the address of a byte in memory from which to begin outputting from, so the reinterpret_cast operator is used to convert the address of any value to the address of a char; the second argument is the number of bytes to output, which is obtained by using the sizeof operator

· To implement the above random-access file scheme, the file must first be created by writing to it blank records of the appropriate size, thus creating a file of sufficient size to hold the desired number of records

· A record will be implemented as a (fixed-size) struct, whose members will be the fields in the record

· See Randacc.cpp (creating a random-access file)

// Creating an empty random-access file

#include <iostream>

#include <fstream>

#include <cstdlib>

using namespace std;

struct clientData // the "record" format

{

 int accountNumber; // key field

 char lastName[15]; // other data

 char firstName[10];

 double balance;

};

int main(void)

{

 ofstream outCredit("c:\\credit.dat", // physical filename

 ios::out | // truncate if it exists

 ios::binary); // use binary with .write

 if (!outCredit)

 { cerr << "File could not be opened." << endl;

 system("PAUSE");

 exit(1);

 }

 clientData blankClient = { 0, "", "", 0.0 }; // a "blank" record

 cout << "Now creating file.";

 for (int i = 0; i < 100; i++) // space for 100 recs

 outCredit.write(

 reinterpret_cast<const char *>(&blankClient),

 sizeof(clientData));

 outCredit.close();

 cout << "\nFile created.\n\n";

 system("PAUSE");

 return 0;

}

· Once the file has been created, to write a record to it we must:

1. obtain the record number

2. determe the location in the file (byte number) the record should be written to

3. use seekp to move the file position pointer to this location

4. use write to output the record

· See writeRand.cpp(writing to a random-access file)

// Writing data directly to a random-access file

#include <iostream>

#include <fstream>

#include <cstdlib>

using namespace std;

struct clientData // the "record" format

{

 int accountNumber; // key field

 char lastName[15]; // other data

 char firstName[10];

 double balance;

};

int main(void)

{

 // open file -- note ios::in needed to prevent file truncation

 ofstream outCredit("c:\\credit.dat", ios::out | ios::in | ios::binary);

 if (!outCredit)

 { cerr << "File could not be opened." << endl;

 system("PAUSE");

 exit(1);

 }

 cout << "Enter account number to write "

 << "(1 to 100, 0 to end)? ";

 clientData client; // input record

 cin >> client.accountNumber; // get rec nbr

 while (client.accountNumber > 0 && // validity check

 client.accountNumber <= 100)

 {

 cout << "Enter lastname, firstname, balance\n?"; // get rest

 cin >> client.lastName >> client.firstName

 >> client.balance;

 outCredit.seekp((client.accountNumber - 1) * // position

 sizeof(clientData));

 outCredit.write(// write

 reinterpret_cast<const char *>(&client),

 sizeof(clientData));

 cout << "\nEnter account number? "; // next rec

 cin >> client.accountNumber;

 }

 outCredit.close(); // done

 cout << endl;

 system("PAUSE");

 return 0;

}

Reading Data Randomly from a Random-access File

· Unformatted data cannot be read from a file with the stream extraction operator (>>), which inputs only formatted data

· Instead we will use the read member function of the ifstream class to read unformatted data directly into memory; its syntax is the same as write:

read(reinterpret_cast<char *> (&value),

 sizeof(value);
· Note that cast is to char *, not const char *

· To read a record, we must:

1. obtain the record number desired to be read

2. determine the location in the file (byte number) the record should be read from

3. use seekg to move the file position pointer to this location

4. use read to input the record

· See readRand.cpp (reading data directly from a random-access file)

// Reading data directly from a random-access file

#include <iostream>

#include <iomanip>

#include <fstream>

#include <cstdlib>

using namespace std;

struct clientData // the "record" format

{

 int accountNumber; // key field

 char lastName[15]; // other data

 char firstName[10];

 double balance;

};

int main()

{

 ifstream inCredit("c:\\credit.dat", ios::in | ios::binary);

 if (!inCredit)

 { cerr << "File could not be opened." << endl;

 exit(1);

 }

 cout << "Enter account number to read "

 << "(1 to 100, 0 to end)? ";

 clientData client; // input record

 cin >> client.accountNumber; // get rec nbr

 while (client.accountNumber > 0 && // validity check

 client.accountNumber <= 100)

 {

 inCredit.seekg((client.accountNumber - 1) * // position

 sizeof(clientData));

 inCredit.read(// read

 reinterpret_cast<char *>(&client), // not const char *

 sizeof(clientData));

 if(client.accountNumber != 0)

 cout << client.firstName << " "

 << client.lastName << " (Balance = "

 << setiosflags(ios::fixed | ios::showpoint)

 << setprecision(2)

 << client.balance << ")\n";

 else

 cout << "No record for that account number.\n";

 cout << "\nEnter account number? "; // next rec

 cin >> client.accountNumber;

 }

 cout << endl;

 system("PAUSE");

 return 0;

}

Suppose we need to read a file and determine the number of alphanumeric characters, the number of blanks and the number of sentences. To determine the number of sentences we will count the number of periods (dots). We will disregard newlines and tabs.

Input File (open notepad copy and paste following text)

Hello World

Predicable choice of output,

Hello World

Predicable choice of output,

Suppose we need to read a file

and determine the number of alphanumeric characters,

the number of blanks and the number of sentences.

To determine the number of sentences we will count

the number of periods (dots).

We will disregard newlines and tabs.

Page 5 of 15

